(18.218.143.170)
Users online: 16709     
Ijournet
Email id
 

Indian Journal of Animal Research
Year : 2019, Volume : 53, Issue : 9
First page : ( 1156) Last page : ( 1161)
Print ISSN : 0367-6722. Online ISSN : 0976-0555.
Article DOI : 10.18805/ijar.B-941

De novo transcriptome analysis of differentially expressed genes in the liver of pampus argenteus under temperature stress

Shi Zhaohong, Liu Lei, Wang Lumin*, Gao Quanxin, Peng Shiming, Yue Yanfeng

Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 200 090, Shanghai, China

*Corresponding author's e-mail: lmwang@ecsf.ac.cn

Online published on 15 October, 2019.

Abstract

Pampus argenteus is an aquatic cold-blooded animal, and its growth and survival are greatly affected by ambient temperature. During aquaculture, a sudden change in water temperature may be caused by climate change or other human factors, resulting in acute temperature stress. In this study, de novo transcriptome sequencing technology was used to analyze changes in the gene expressions in the liver of P. argenteus under temperature stress to understand the mechanisms of temperature regulation in P. argenteus. The results showed that 72447398, 69534310, 63698204, 78876728 and 53969050 clean reads were obtained from four cDNA libraries (A: 27°C (control group), B: 22°C and 6 h, C: 32°C and 6 h, D: 22°C and 12 h, E: 32°C and 12 h) of the P. argenteus by Illumina sequencing technology. In A\B, A\C, A\D and A\E pairwise comparison, 353, 431, 1303 and 343 differentially expressed genes (DEGs) were detected, respectively. Of these genes, 67 genes were identified among all the pairwise comparisons as the common DEGs. Four genes related to metabolic adaption to temperature were randomly selected to validate the DEGs results by real time PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated some vital genes and pathways associated with metabolism in response to temperature challenge. These results will help us to understand the molecular mechanism underlying temperature regulation in P. argenteus and provide a theoretical basis for the study of related molecular mechanisms in fish under temperature stress.

Top

Keywords

De novo transcriptome analysis, Pampus argenteus, Temperature stress.

Top

  

Access denied

Your current subscription does not entitle you to view this content or Abstract is unavailable, the access to full-text of this Article/Journal has been denied. For Information regarding subscription please click here.

For a comprehensive list of other publications available on IJour.net please click here

or, You can subscribe other items from IJour.net (Click here to see other items list.)

Top

║ Site map ║ Privacy Policy ║ Copyright ║ Terms & Conditions ║ Page Rank Tool
751,308,700 visitor(s) since 30th May, 2005.
All rights reserved. Site designed and maintained by DIVA ENTERPRISES PVT. LTD..
Note: Please use Internet Explorer (6.0 or above). Some functionalities may not work in other browsers.